1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
| import bs4 from langchain.chains import create_history_aware_retriever, create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_community.chat_message_histories import ChatMessageHistory from langchain_community.document_loaders import WebBaseLoader from langchain_community.vectorstores import Chroma from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_text_splitters import RecursiveCharacterTextSplitter
loader = WebBaseLoader( web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",), bs_kwargs=dict( parse_only=bs4.SoupStrainer( class_=("post-content", "post-title", "post-header") ) ), ) docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings) retriever = vectorstore.as_retriever()
contextualize_q_system_prompt = """Given a chat history and the latest user question \ which might reference context in the chat history, formulate a standalone question \ which can be understood without the chat history. Do NOT answer the question, \ just reformulate it if needed and otherwise return it as is.""" contextualize_q_prompt = ChatPromptTemplate.from_messages( [ ("system", contextualize_q_system_prompt), MessagesPlaceholder("chat_history"), ("human", "{input}"), ] ) history_aware_retriever = create_history_aware_retriever( chat, retriever, contextualize_q_prompt )
qa_system_prompt = """You are an assistant for question-answering tasks. \ Use the following pieces of retrieved context to answer the question. \ If you don't know the answer, just say that you don't know. \ Use three sentences maximum and keep the answer concise.\
{context}""" qa_prompt = ChatPromptTemplate.from_messages( [ ("system", qa_system_prompt), MessagesPlaceholder("chat_history"), ("human", "{input}"), ] ) question_answer_chain = create_stuff_documents_chain(chat, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory: if session_id not in store: store[session_id] = ChatMessageHistory() return store[session_id]
conversational_rag_chain = RunnableWithMessageHistory( rag_chain, get_session_history, input_messages_key="input", history_messages_key="chat_history", output_messages_key="answer", )
conversational_rag_chain.invoke( {"input": "What is Task Decomposition?"}, config={ "configurable": {"session_id": "abc123"} }, )["answer"]
conversational_rag_chain.invoke( {"input": "What are common ways of doing it?"}, config={"configurable": {"session_id": "abc123"}}, )["answer"]
|